Л 4. Скалярное произведение векторов. Угол между векторами. Перпендикулярные вектора Векторное произведение векторов. Сме панное произведение.

Определение. Скалярным произведением векторов \vec{a} и \vec{b} называется число, равное произведению модулей этих векторов на косинус угла между ними, т.е.

$$\overrightarrow{a} \cdot \overrightarrow{b} = \begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} \cdot \begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix} \cdot \cos \begin{pmatrix} \overrightarrow{a} & \overrightarrow{b} \\ a & b \end{pmatrix}.$$

Скалярное произведение обозначается символами $\vec{a} \cdot \vec{b}$, $\vec{a} \vec{b}$, $(\vec{a} \vec{b})$. Для любых векторов \vec{a} и \vec{b} верно соотношение $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \Pi P_{\vec{a}} \vec{b} = |\vec{b}| \Pi P_{\vec{b}} \vec{a}$.

Теоре ма. Пусть в базисе $\{\vec{i}, \vec{j}, \vec{k}\}$ вектор \vec{a} имеет координаты (x_1, y_1, z_1) , а вектор $\vec{b} - (x_1, y_1, z_1)$. Тогда $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$.

Пример. Если $\vec{a} = (1,2,3)$, a $\vec{b} = (4,5,6)$, то $\vec{a} \cdot \vec{b} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32$.

Следствие 1. Если вектор $\vec{a} = (x, y, z)$, в базисе $\{\vec{i}, \vec{j}, \vec{k}\}$, то $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$.

Следствие 2 Косинус угла φ между векторами $\vec{a} = (x_1, y_1, z_1)$ и $\vec{b} = (x_2, y_2, z_2)$ равен

$$\cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

Следствие 3 Векторы $\vec{a} = (x_1, y_1, z_1)$ и $\vec{b} = (x_2, y_2, z_2)$ перпендикулярны только в том случае, когда $|\vec{a}| \cdot |\vec{b}| = x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$.

Определение. Направля ющими косинусами ненулевого вектора \vec{a} называются косинусы углов, образованных этим вектором с осями координат Ox, Oy, Oz.

Обычно эти углы обознача югся через α , β , γ .

Следствие 4. Для вектора \vec{a} с координатами (x, y, z) направляющие косинусы записываются в виде: $\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}; \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}};$

$$\cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}};$$

Определение. Векторным произведением векторов \vec{a} и \vec{b} называется вектор $\vec{c} = \vec{a} \times \vec{b}$, удовлетворя ющий трем условиям **a)** Модуль вектора \vec{c}

равен произведению модулей векторов \vec{a} и \vec{b} на синус угла между ними: $\vec{a} = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a} \cdot \vec{b})$; **в**) \vec{c} перпендикулярен векторам \vec{a} и \vec{b} , т.е. он перпендикулярен плоскости, проходя щей через вектора \vec{a} и \vec{b} ; **c**) Тройка векторов \vec{a} , \vec{b} , \vec{c} - правая.

- 1°. В отличие от скалярного произведения, векторное произведение антикоммутативно, т. е. для любых векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ верно: $\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{a} = -\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}$.
- 2° . Ненулевые векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ коллинеарны только в том случае, когда $\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} = 0$.
- 3°. Постоянный мно житель можно выносить за знак векторного произведения, т.е. для любых векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ и числа λ верно $\left(\stackrel{\rightarrow}{\alpha}\stackrel{\rightarrow}{a}\right)\times\stackrel{\rightarrow}{b}=\lambda\stackrel{\rightarrow}{\left(\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b}\right)}$.
- 4°. Векторное произведение обладает свойством дистрибутивности, т.е. для любых векторов $\vec{a_1}, \vec{a_2}, \vec{b}$ верно $(\vec{a_1} + \vec{a_2}) \times \vec{b} = \vec{a_1} \times \vec{b} + \vec{a_2} \times b$.

Теоре ма. Пусть в базисе $\{\vec{i}, \vec{j}, \vec{k}\}$ векторы \vec{a} и \vec{b} име ют координаты (x_1, y_1, z_1) и (x_2, y_2, z_2) соответственно.

Тогда в этом базисе $\overrightarrow{a} \times \overrightarrow{b} = ((y_1 z_2 - z_1 y_2), (x_1 z_2 - z_1 x_2), (x_1 y_2 - y_1 x_2)).$

Для запоминания этой формулы используется её запись в виде условного определителя:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix},$$

который необходимо разложить по первой строке.

Пример Пусть $\vec{a} = (1,2,3,), \vec{b} = (4,5,6),$

Найдем $\overrightarrow{a} \times \overrightarrow{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = \vec{i} (2 \cdot 6 - 3 \cdot 5) - \vec{j} (1 \cdot 6 - 3 \cdot 4) + \vec{k} (1 \cdot 5 - 2 \cdot 4) = -3 \vec{i} + 6 \vec{j} - 3 \vec{k} = (-3, 6, -3).$$

Следствие 1. Ппоцадь параллелограмма, построенного на векторах $\vec{a}=(x_1,y_1,z_1)$ и $\vec{b}=(x_2,y_2,z_2),$ равна: $S_{nap}=\left|\vec{a}\times\vec{b}\right|=\sqrt{(y_1z_2-z_1y_2)^2+(x_1z_2-z_1x_2)^2+(x_1y_2-y_1x_2)^2}$.

Пло щадь треугольника, построенного на этих векторах, равна:

$$S_{mp} = \frac{1}{2} \left| \vec{a} \times \vec{b} \right| = \frac{1}{2} \sqrt{(y_1 z_2 - z_1 y_2)^2 + (x_1 z_2 - z_1 x_2)^2 + (x_1 y_2 - y_1 x_2)^2}.$$

Следствие 2 Площадь параллелограмма, построенного на векторах $\vec{a}=(x_1,y_1)$ и $\vec{b}=(x_2,y_2)$, лежащих в плоскости $O\!xy$, равна: $S_{nap}=\left|x_1y_2-y_1x_2\right|$. Пло падь треугольника, построенного на векторах, равна: $S_{np}=\frac{1}{2}\left|x_1y_2-y_1x_2\right|$.

Определение. Сме цинным произведением трех векторов $\vec{a}, \vec{b}, \vec{c}$ называется число, равное скалярному произведению векторного произведения векторов \vec{a} и \vec{b} с вектором \vec{c} .

Оно обозначается символами $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{n}$ или $\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{n}:\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{n}=\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{\times}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}$.

Свойства сме шанного произведения

- 10. Сме па нное произведение векторов $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}$ равно \pm объе му параллелепипеда, построенного на этих векторах: $\stackrel{\rightarrow}{a}\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}=\pm V_{nap}$. Здесь знак «+» берется в случае, если тройка векторов $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}-$ правая, «-» если она левая.
- 2^{0} . Векторы a,b,n- явля югся компланарными только в том случае, когда их сме панное произведение равно 0: $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} = 0$.
- 3⁰. При перестановке местами любых двух векторов сме цанного произведения оно меняет свой знак на противоположный; т.е.

$$\overrightarrow{ab} \overrightarrow{n} = -\overrightarrow{ac} \overrightarrow{b} = \overrightarrow{c} \overrightarrow{ab} = -\overrightarrow{c} \overrightarrow{b} \overrightarrow{a} = \overrightarrow{b} \overrightarrow{c} \overrightarrow{a} = -\overrightarrow{b} \overrightarrow{ac}.$$

- 4^{0} . Постоянный сомно житель можно выносить из любого сомно жителя сме панного произведения, т.е. для любых векторов $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}$ и числа λ $\left(\stackrel{\rightarrow}{\lambda}\stackrel{\rightarrow}{a}\right)\stackrel{\rightarrow}{b}\stackrel{\rightarrow}{c}=\stackrel{\rightarrow}{\lambda}\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}$.
- 5^{0} . Сме па нное произведение дистрибутивно для любого сомно жителя, т. е. для любых векторов $\vec{a_1}, \vec{a_2}, \vec{b}, \vec{c}$ верно: $(\vec{a_1} + \vec{a_2})\vec{b} \cdot \vec{c} = \vec{a_1} \cdot \vec{b} \cdot \vec{c} + \vec{a_2} \cdot \vec{b} \cdot \vec{c}$.

Теоре ма. Пусть в базисе $\left\{\vec{i}, \vec{j}, \vec{k}\right\}$ векторы $\vec{a}, \vec{b}, \vec{c}$ име ют координаты соответственно (x_1, y_1, z_1) , (x_2, y_2, z_2) и (x_3, y_3, z_3) , тогда их сме шанное произведение записывается в виде определителя: $\vec{a} \vec{b} \vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$.

Следствие. Объем параллеленинеда, построенного на векторах $\vec{a} = (x_1, y_1, z_1,), \quad \vec{b} = (x_2, y_2, z_2,), \quad \vec{c} = (x_3, y_3, z_3,), \quad \text{равен } V_{\textit{nap}} = \begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} & \vec{b} & \vec{c} \end{vmatrix}.$

Объем тетраэдра (треугольной пирамиды), образованного этими векторами, равен:

$$V_{memp} = \frac{1}{6} |abc|$$
.